Project 1.1 - High Dimensional Data

We develop deep learning techniques and efficient architectures for quantitative analysis of 4- and 5-D medical images that make optimal use of additional dimensions and apply them to cardiac spectral CT and MRI and sequential 4D chest CT.

Project Leader

Amsterdam UMC
Dr. Ivana Išgum Amsterdam UMC i.isgum@amsterdamumc.nl

Co-Applicants

Radboud University Medical Center
Prof.dr. Bram van Ginneken Radboud University Medical Center bram.vanginneken@radboudumc.nl
University of Amsterdam
Prof.dr. Max Welling University of Amsterdam m.welling@uva.nl
University Medical Center Utrecht
Prof.dr.ir. Max Viergever University Medical Center Utrecht M.Viergever@umcutrecht.nl
University Medical Center Utrecht
Prof.dr. Tim Leiner University Medical Center Utrecht T.Leiner@umcutrecht.nl

Researchers

Radboud University Medical Center
Dr. Nikolas Lessmann Radboud University Medical Center nikolas.lessmann@radboudumc.nl
Amsterdam UMC
Dr. Bob de Vos Amsterdam UMC b.d.devos@amsterdamumc.nl
Amsterdam UMC
Steffen Bruns Amsterdam UMC s.bruns@amsterdamumc.nl
University Medical Center Utrecht
Robbert van Hamersvelt University Medical Center Utrecht R.W.vanHamersvelt-3@umcutrecht.nl

Publications

2020

S. Bruns, J.M. Wolterink, R.A.P. Takx, R.W. van Hamersvelt, D. Suchá, M.A. Viergever, T. Leiner, I. Išgum

Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT Journal Article

Medical Physics (in press), 2020.

Abstract | Links | BibTeX

B.D. de Vos, B.H.M. van der Velden, J. Sander, K.G.A. Gilhuijs, M. Staring, I. Išgum

Mutual information for unsupervised deep learning image registration Inproceedings

SPIE Medical Imaging, in press, 2020.

Abstract | Links | BibTeX

S. Bruns, J.M. Wolterink, T.P.W. van den Boogert, J.P. Henriques, J. Baan, R.N. Planken, I. Išgum

Automatic whole-heart segmentation in 4D TAVI treatment planning CT Inproceedings

SPIE Medical Imaging (in press), 2020.

Abstract | BibTeX

2019

R.W. van Hamersvelt, I. Išgum, P.A. de Jong, M.J. Cramer, G.E. Leenders, M.J. Willemink, M. Voskuil, T. Leiner

Application of speCtraL computed tomogrAphy to impRove specIficity of cardiac compuTed tomographY (CLARITY study): Rationale and Design Journal Article

BMJ Open, 9 (3), pp. e025793, 2019.

Abstract | Links | BibTeX

S. Bruns, J.M. Wolterink, R.W. van Hamersvelt, T. Leiner, I. Išgum

CNN-based segmentation of the cardiac chambers and great vessels in non-contrast-enhanced cardiac CT Conference

Medical Imaging with Deep Learning. MIDL London, 2019.

Abstract | Links | BibTeX

Nikolas Lessmann, Jelmer M. Wolterink, Majd Zreik, Max A. Viergever, Bram van Ginneken, Ivana Išgum

Vertebra partitioning with thin-plate spline surfaces steered by a convolutional neural network Conference

Medical Imaging with Deep Learning. MIDL London, 2019.

Abstract | Links | BibTeX

S. Bruns, J.M. Wolterink, R.W. van Hamersvelt, M. Zreik, T. Leiner, I. Išgum

Improving myocardium segmentation in cardiac CT angiography using spectral information Inproceedings

SPIE Medical Imaging, 2019.

Abstract | Links | BibTeX